Bastin et al._Global_Ecology_and_Biogeography

Bastin J.F., Rutishauser E, Kellner J.R., Saatchi S., Pélissier R., Hérault B., Slik F., Bogeart J., De Cannière C., Marshall A.R., Poulsen J., Alvarez-Loyayza P., Andrade A., Angbonga-Basia A., Araujo-Murakami A., Arroyo L., Ayyappan, N., Paulo de Azevedo C, Banki O., Barbier N., Barroso J., Beeckman H., Bitariho R., Boeckx P., Boehning-Gaese K., Brandao H., Brealey F. Q., Breuer Ndoundou Hockemba M., Brienen R., Camargo J. L. C., Campos-Arceiz A., Cassart B., Chave J., Chazdon R., Chuyong G., Clark D. B., Clark C. J., Condit R., Honorio Coronado E. N., Davidar P., de Haulleville T., Descroix L., Doucet J.L., Dourdain A., Droissart V., Duncan T., Silva Espejo J., Espinosa S., Farwig N., Fayolle A., Feldpausch T. R., Ferraz A., Fletcher C., Gajapersad K., Gillet J.F., Leao do Amaral I., Gonmadje C., Grogan J., Harris D., Herzog S. K., Homeier J., Hubau W., Hubbell S. P., Hufkens  K, Hurtado J., Kamdem N.G., Kearsley E., Kenfack D., Kessler M., Labrière N., Laumonier Y., Laurance W., Lewis S., Libalah M. B., Ligot G. Lloyd J., Lovejoy J., Malhi Y., Marimon Junior BH, Martin E., Matius P., Meyer V., Mendoza Bautista C., Monteagudo-Mendoza A., Mtui A., Neill D., Parada Gutierrez G A., Pardo G., Parren M., Parthasarathy N., Phillips O L. Pitman N. C.A., Ploton  P., Ponette Q., Ramesh B.R., Razafimahaimodison J.C., Réjou-Méchain M., Gonçalves Rolim S., Romero Saltos H., Brum Rossi L. M. Spironello W. R., Rovero F., Saner P., Sasaki D., Schulze M., Silveira M., Singh J., Sist P., Sonke B., Soto J., D., Rodrigues de Souza C., Stropp J., Sullivan  M. J.P., Swanepoel B., ter Steege H., Terborgh J., Texier N., Toma T., Valencia R., Velenzuela L., Valle Ferreira L., Cornejo Valverde F., Van Andel T. R., Vasque R., Verbeeck H., Vivek P., Vleminckx J., Vos V. A., Wagner F. H., Warsudi P. P., Wortel V., Zagt R. J., Zebaze D.

[2018] Pan-tropical prediction of forest structure from the largest trees, Global Ecology and Biogeography, 27, 1366-1383

Abstract

Aim: Large tropical trees form the interface between ground and airborne observa‐tions, offering a unique opportunity to capture forest properties remotely and to inves ‐tigate their variations on broad scales. However, despite rapid development of metricsto characterize the forest canopy from remotely sensed data, a gap remains betweenaerial and field inventories. To close this gap, we propose a new pan‐tropical model to predict plot‐level forest structure properties and biomass from only the largest trees.

Location: Pan‐tropical.Time period: Early 21st century.

Major taxa studied: Woody plants.

Methods: Using a dataset of 867 plots distributed among 118 sites across the tropics, we tested the prediction of the quadratic mean diameter, basal area, Lorey’s height, community wood density and aboveground biomass (AGB) from the ith largest trees.

Results: Measuring the largest trees in tropical forests enables unbiased predictions of plot‐ and site‐level forest structure. The 20 largest trees per hectare predicted quad ‐ratic mean diameter, basal area, Lorey’s height, community wood density and AGB with 12, 16, 4, 4 and 17.7% of relative error, respectively. Most of the remaining error in biomass prediction is driven by differences in the proportion of total biomass held in medium‐sized trees (50–70 cm diameter at breast height), which shows some continental dependency, with American tropical forests presenting the highest proportionof total biomass in these intermediate‐diameter classes relative to other continents.

Main conclusions: Our approach provides new information on tropical forest structure and can be used to generate accurate field estimates of tropical forest carbon stocks to support the calibration and validation of current and forthcoming space missions. It will reduce the cost of field inventories and contribute to scientific under ‐standing of tropical forest ecosystems and response to climate change.

Consultez la notice complète de l’article sur ORBi