Gilles A., Lisein J., Cansell J., Latte N., Piedallu C., Claessens H. [2024 ] Spatial and remote sensing monitoring shows the end of the bark beetle outbreak on Belgian and north‑eastern France Norway spruce (Picea abies) stands, Environ Monit Assess 196:226. doi.org/10.1007/s10661-024-12372-0
 
Abstract : 
In 2022, Europe emerged from eight of the hottest years on record, leading to significant spruce mortality across Europe. The particularly dry weather conditions of 2018 triggered an outbreak of bark beetles (Ips typographus), causing the loss of thousands of hectares of Norway spruce stands, including in Wallonia and North-eastern France. A methodology for detecting the health status of spruce was developed based on a dense time series of satellite imagery (Sentinel-2). The time series of satellite images allowed the modelling of the spectral response of healthy spruce forests over the seasons: a decrease in photosynthetic activity of the forest canopy causes deviations from this normal seasonal vegetation index trajectory. These anomalies are caused by a bark beetle attack and are detected automatically. The method leads in the production of an annual spruce health map of Wallonia and Grand-Est. The goal of this paper is to assess the damage caused by bark beetle using the resulting spruce health maps. A second objective was to compare the influence of basic variables on the mortality of spruce trees in these two regions. Lasted 6 years (2017–2022), bark beetle has destroyed 12.2% (23,674 ha) of the spruce area in Wallonia and Grand-Est of France. This study area is composed of three bioclimatic areas: Plains, Ardennes and Vosges, which have not been equally affected by bark beetle attacks. The plains were the most affected, with 50% of spruce forests destroyed, followed by the Ardennes, which lost 11.3% of its spruce stands. The Vosges was the least affected bioclimatic area, with 5.6% of spruce stands lost. For the most problematic sites, Norway spruce forestry should no longer be considered.